
SOME MATHEMATICAL PROPERTIES OF MASTER EQUATIONS

DMITRII E MAKAROV

Here I will summarize certain mathematical properties of the master equation

dpi
dt

= −
∑
j 6=i

ki→jpi +
∑
j 6=i

kj→ipj. (1)

This equation describes the time evolution of a stochastic system that can occupy
any of its N states, which are labeled by indices i, j = 1, 2, ..., N . The probability
of finding the system in state i at time t is given by pi(t). The properties of the
system are completely specified by the initial conditions pi(0) and by the set of rate
coefficients ki→j between each pair of states. Of course, not all of the rate coefficients
have to be nonzero. I will, however, assume that all the states are “connected” in
that, for any pair of states i and j, there is a sequence of intermediate states, i1, i2, ...,
iM such that the rate coefficients ki→i1 , ki1→i2 , ..., kiM→j are nonzero. In other words,
it is possible to arrive in any state j, having started from any state i, either directly
or through a sequence of intermediate states. If this is not the case then it makes
sense to break all the states into the subsets of connected states. The dynamics
within each subset is then completely decoupled from that of all other subsets and
so each subset can be studied separately.

I will further assume that the rate coefficients satisfy the detailed balance condi-
tion:

ki→jp
(eq)
i = kj→ip

(eq)
j , (2)

where p
(eq)
i is the equilibrium population of state i. The master equation can be

rewritten in a matrix form:
dp

dt
= −Kp, (3)

where p is a column vector with components pi and K is a square matrix, whose
elements are given by Kij = −kj→i for j 6= i and Kii =

∑
j 6=i ki→j. The solution of

this equation can be written as

p(t) = T(t)p(0), (4)

where the transition matrix T is equal to the matrix exponent

T(t) = exp(−Kt) (5)
1
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Consider the probability pi(t) to find the system in state i at time t. According to
Eq.4, this can be written as

pi(t) =
∑
j

Tij(t)pj(0),

allowing us to interpret the matrix elements Tij(t) as the conditional probabilities to
find the system in a state i at time t provided that it was in state j at time 0.

If the transition matrix T is known, the rate coefficients of the underlying master
equation can be recovered by using the following relation:

ki→j = lim
t→0+

dTji(t)/dt (6)

This result is readily proven by expanding Eq.5 in a Taylor series in t and using
the above definition of matrix K. This expression formalizes our definition of a rate
coefficient as transition probability per unit time. We will use it later to obtain rate
coefficients from molecular trajectories.

Inroducing the eigenvectors uα and eigenvalues λα of the matrix K, defined by the
equation

Kuα = λαuα, (7)

we can also write the solution of the master equation as a spectral expansion,

p(t) =
∑
α

cα exp(−λαt)uα, (8)

where the coefficients cα are determined by the initial condition. On important prop-
erty of the eigenvalues λα is that they are real numbers. To show this, consider one
of the eigenvalues λ and the corresponding eigenvector u and rewrite Eq.7 explicitly
as follows: ∑

j

Kijuj = λui (9)

Now define a rescaled matrix

K̃ij =
Kijp

(eq)
j√

p
(eq)
i p

(eq)
j

and rescaled eigenvector vj = uj/
√
p
(eq)
j . In terms of those, the above eigenvalue

equation can be rewritten as ∑
j

K̃ijvj = λvi
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Therefore, λ is also an eigenvalue of the rescaled matrix K̃. In view of the detailed
balance condition, Eq.2, the rescaled matrix K̃ is symmetric and so the eigenvalue λ
is a real number. This, in particular, implies that our master equation cannot have
oscillatory solutions.

Further physical constraints on the eigenvalues λα come from two physical require-
ments. Firstly, the probabilities pi are nonnegative numbers that cannot exceed one.
Thus negative values λα are unphysical, as, according to Eq.8, they would lead to
exponentially growing probabilities. Secondly, all λα’s cannot be positive because,
according to Eq.8, this would make all probabilities vanish in the limit t → ∞, a
result that would contradict the assertion that the system is always found in one of
the N states and so the probabilities pi must add up to one at any time t1. Instead,
in the limit t→∞ the populations of states should be approaching their equilibrium

values, i.e., pi(∞) = p
(eq)
i . Therefore, one of the λα’s, say the one corresponding to

α = 0, must be equal to zero, λ0 = 0. The corresponding eigenvector u0 is, to within
a constant normalization factor, given by

u0 = (p
(eq)
1 , p

(eq)
2 , ..., p

(eq)
3 )T .

Indeed, substituting p = u0 into the rhs of Eq.3 results in the identity dp/dt = 0, as
anticipated for equilibrium probabilities.

Finally, consider any quantity (e.g. position etc.) x that takes on discrete values
x = x1, x2, ..., xN when the system is, respectively, in states i = 1, 2, ..., N . The
trajectory x(t) is therefore a piecewise function that remains constant as long as the
system remains in the same state. Computation of the correlation functions of the
form 〈x(0)x(t)〉 is a commonly encountered problem. For a system obeying the above
master equation, this correlation function can be calculated as

〈x(0)x(t)〉 =
∑
i,j

xjTji(t)xip
eq
i = xT e−Ktx̃,

where x̃ is the column-vector with the components (x1p
eq
1 , x2p

eq
2 , ..., xNp

eq
N ).

1The fact that the sum of the probabilities P (t) =
∑

i pi(t) is conserved is readily proven by
considering its time derivative dP/dt =

∑
i dpi/dt. To calculate dP/dt we thus simply sum the rhs

of Eq.1 over i, which gives zero.


