
Elements of kinetics 
 
 
Statistical mechanics does not tell us anything about how fast things happen. For 
example, from equilibrium considerations, wood, in the presence of oxygen, should turn 
into carbon dioxide and water at room T.  It however doesn’t unless we burn it (i.e., 
increase the temperature) given typical observation times.  
 
Consider an isomerization process 
 
A = B 
 
We know from experience, that the amounts of A and B are well described by 
phenomenological equations: 
 

 

 
We note that these equations are not exact: they are accurate enough only if we are 
looking at time scales that are slow enough: If we study molecules at fast (say picosecond 
or femtosecond time scales) then these equations will not be correct.    
 
 
In equilibrium, the lhs of these eqs. should be zero so that 
 
   
 
On the other hand,  
 
NB/NA = qB/qA = K,  
 
where qA and qB are the partition functions corresponding to A and B and K is the 
equilibrium constant. Therefore we expect 
 

 
 
I.e., the ratio of the two rate constants, kf and kB should be equal to the ratio of the 
partition functions qB/qA equal to the equilibrium constant of the reaction.  
 
If we divide our kinetic equations by the total number of atoms N we will find: 
 



  

 
where pA and pB are the probabilities for the molecule to be in the forms A and B.    
 
 
Suppose that at we prepared at t=0 a non-equilibrium ensemble of molecules such that a 
fraction pA(0) of the molecules is in state A and pB(0)= 1-pA(0) in state B. From 
probability theory, we know that 
 

 

 
 
Here p(B,t|A,0) is the conditional probability that one finds the molecule in state B at 
time t provided that it was in state A at t=0 etc. This follows from the fact that p(A,t|B,0) 
pB(0) is the joint probability of finding the molecule in state B at t=0 and in state A at 
time t etc. We can write the above equation as matrix multiplication: 
 

 

 
 
 
On the other hand, if we solve the above kinetic equations directly, we will find: 
 

   

 
 
where k = kb+kf.  
 
For t →∞ we find 
 



 

so that  as we expect in equilibrium.  
 
You can also check that the sum of the probabilities pA and pB is equal to 1 for any t.  
 
Another result that will prove useful is that 
 

 

 
Loosely speaking, kf is the probability of going from A to B per unit time. Similarly,  
 

 

 
 
Now we’d like to relate the above phenomenological description to a more microscopic 
picture of the dynamics. Suppose, for example, that the dynamics of our system can be 
described as one-dimensional motion along a single reaction coordinate s: 
 

 
 
 
Our goal is to calculate the rate constants kf and kb from the properties of the potential 
energy  profile V(s). We will assume that the motion of our system obeys the classical-
mechanical equations of motion: 
 

  

 



We could in principle solve the problem by initially creating an ensemble of molecules 
with different initial conditions, . We can assume that our ensemble 
obeys the Boltzmann statistics. That is, the probability density for the variables si(0), pi(0) 
is 
 

 
 
We now let our ensemble of trajectories evolve independently, each starting with its own 
initial condition. If at a time t we examine our ensemble and measure the coordinate and 
the momentum, si(t), pi(t), we will discover that our ensemble still obeys the Boltzmann 
statistics (this is because the energy and the phase-space volume are conserved along the 
trajectories).  
 
The correct Boltzmann distribution is the equilibrium distribution for our system. This 
distribution will not change with time. We can however imagine that we have initially 
excluded any initial conditions with s > s≠. In other words, we have prepared an ensemble 
of molecules A only. Now we can watch our molecules undergo the reaction A = B. If we 
follow the time evolution of each trajectory we then discover that some trajectories will 
cross over to the right of the dividing line s=s≠ thus transforming into B. If we count the 
number NB(t) = NpB(t) of the trajectories that have s(t)>s≠  , we then can substitute this 
result into our kinetic equations and from them calculate kf and kb.  
 
In practice, the above plan is typically doomed. The problem is that a trajectory crossing 
over the barrier at s = s≠ is a very unlikely event. Indeed, for that the molecule should 
have an extra energy of at least V≠ .  The number of such molecules is thus proportional 
to the factor exp(-V≠/kBT). Since typically V≠ > kBT, the fraction of such successful 
trajectories is very small.  If, for example, exp(-V≠/kBT) ~ 10-10 and we generate say 1 
million trajectories on the computer, then it is very likely that none of them will succeed 
surmounting the barrier V≠.   Thus we could conclude from our simulation that there is no 
reaction A = B taking place, which, of course, is wrong.  
 
 
Intuitively, the rate of crossing from A to B should be proportional to the number of 
successful trajectories, i.e., kf ~ exp(-V≠/kBT).  
 
 We now show how one can overcome the above difficulty. We use the formula: 
 
 

 

 
 
where J(B,t|A,0) is the joint probability for being in state A at time 0 and at B at time t.  
 



Introduce the functions 
 

 

 
 

 

 
The function θA(s) is equal to 1 if we are on the A side of the potential energy profile and 
zero otherwise. The purpose of introducing such a function is to map the continuous 
coordinate s onto a discrete, two-state system that has only two states, A and B.  
 
 
Consider the quantity 
 

   
< θB (s(t))θA(s(0)) >= q−1 dΓ

2π∫ exp(−βH (Γ))θA(s(0))θB (s(t))  

 
where Γ denotes a point in the phase space and  
 

 

 
Quantities of the above kind are called correlation functions.  
 
 
Before we go on with our derivation, we need to discuss how integrals can be evaluated 
by Monte Carlo method. Suppose we want to calculate the average <f(x)> given that x 
has a normalized probability distribution W(x). We have 
 
 

 

 
We could do it directly by evaluating the above integral numerically. However in many 
cases (especially when such an integral needs to be evaluated in more than one 
dimension) Monte Carlo importance sampling methods are more advantageous. Suppose 
that our computer has a random number generator that can generate random numbers xi, i 
= 1, 2, …, N, with the probability distribution W(x). Then in the limit N →∞  the above 
integral can be calculated as: 



 
 

. 

 
To see this we note that the number of xi’s that will be generated in the range x < xi < 
x+Δx is equal to NW(x) Δx  so that the above sum can be written as 
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We are going to calculate the above correlation function using Monte Carlo as follows: 
We consider an equilibrium Boltzmann ensemble of trajectories, with positions and 
momenta distributed according to the Boltzmann distribution. As argued above, once 
Boltzmann, the ensemble stays Boltzmann. If, at time t=0, we look at the positions and 
the momenta of each member of the ensemble, we will find that they obey the Boltzmann 
distribution. So we can generate our ensemble by launching trajectories with the initial 
position and momentum, (s(0), p(0)) , taken from the Boltzmann distribution: 
 

W(s(0), p(0))dp(0) ds(0) = W(Γ) dΓ =   

 
We then follow each trajectory over the period of time equal to t. If s(0) is to the left of s≠ 
and s(t) is to the right of s≠ then the contribution from such a trajectory will be equal to 1. 
Otherwise the trajectory will contribute zero due to the presence of the functions  θA and 
θB in the integrand. In other words, the product will select the 
trajectories that start, at t=0, on the reactant (A) side of the barrier and end up, at time t, 
on  the product side. Therefore  is the fraction of such trajectories in 
the Boltzmann ensemble of the trajectories. In other words, it is the joint probability 
P(B,t|A,0) that we are in state A at t=0 and state B at time t. To get the conditional 
probability pBA(t), we simply need to divide the above quantity by the equilibrium 
probability pA that we are in state A at t=0 (recall from probability theory that the joint 
probability of two events, p(b, a) is the probability of a times the conditional probability  
p(b|a) for b to happen given that a happened. )      
 
 
We have 
 

 
 



where pA = <θA(s(0))> = qA/q .  
 
 
 
We found 
 

 
 

where pA = <θA(s(0))> = qA/q .  
 
 

   
k f (t) = dpBA(t) / dt =< θA(s(0)) θB (s(t)) > / pA = − < θA(s(0))θB (s(t)) > / pA =< θB (s(0))θB (s(t)) > / pA

 
We have used the fact that θA = 1 - θB and that  
 

 
 
The latter property results from time-translation symmetry of classical trajectories, which 
implies 
 

 
 
Differentiating this with respect to t gives the above identity.  
 
Using the formula 
 

   

d
dt
θ(s(t) − s≠ ) = s(t)δ (s(t) − s≠ )  

 
we find 
 
 

   
k f = pA

−1 < s(0)δ (s(0) − s≠ )θ(s(t) − s≠ ) >|t→0
 

 
The reason why this expression is advantageous numerically is the presence of the δ-
function in it: This selects the trajectories that originate at the dividing point s≠ and thus 
have a fair chance to make transition from A to B.    
 
 
In the limit t → 0 we can write   
 
 

 



 
The presence of  in our expression selects trajectories with positive initial 
velocity, . In other words, only the trajectories going from left to right (A to B) 
contribute to kf. We can rewrite our expression as 
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−1q−1 dpds
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Another way to write this is: 
 
 

 

 
where  
 

 

 
is the constrained partition function at the dividing point. The above expressions for kf 
can be interpreted in terms of the average flux of the trajectories crossing the dividing 
surface (dividing point in our case, but it becomes a hypersurface if we consider more 
degrees of freedom). The number of such trajectories is proportional to the velocity at the 
dividing point.   
 
Yet another way to think of our result is 
 

  

where is the partition function of the “activated complex”, which is obtained by 
constraining our system to sit at s = and excluding integration over the degrees of 
freedom (p and s) of the unstable mode of the activated complex [in one dimension, there 
are no other modes so ].  
 
What we have derived is the famous transition state theory (TST) approximation for the 
reaction rate (We will discuss later why this is an approximation).  
 
We can calculate kb the same way. We will find that  
 



kf qA = kb qB 
 
so that the ratio of the two rate constants is, indeed, equal to the equilibrium constant. 
 
It is a bit disconcerting that our classical expression contains Planck’s constant. We 
should however remember that the partition functions qA,B also contain Planck’s 
constant. Typically, it will cancel out in the classical limit.  
 
Suppose, for example, that the motion in the potential well corresponding to molecule A 
is well described in the harmonic approximation. If the frequency of this motion is ωA 
then 
 
 

exp(-βVA), 

 
where VA is the potential energy at the minimum corresponding to A. This gives 
 

 

 
This formula is intuitively appealing:  it says that the rate constant is equal to an “attempt 
frequency” ωA/2π times the Boltzmann probability to reach the top of the barrier  
   
 
Recrossings and variational transition state theory 
 
There is a problem with the TST rate: It depends on the location of the point dividing the 
reactants and products. Experimentally, we know that it shouldn’t as our measurements 
typically don’t even know about this point.   
 
To see what went wrong let’s examine our original expression for the rate constant: 
 
 

   
k f = pA

−1 < s(0)δ (s(0) − s≠ )θ(s(t) − s≠ ) >|t→0
 

 
This equation says: pick a trajectory at t=0 starting at s≠. The number of such trajectories 
crossing the dividing surface is proportional to . However they should be counted 
only if they are “reactive”, i.e., if they end up on the product side of the barrier. This 
condition is enforced by the step function θ(s(t)-s≠), which excludes any trajectories that 
are to the left of the dividing point at time t. We have said that the trajectories moving to 
the right  at t=0 are reactive. This is however not so because some of them can recross. 
When we took the t → 0 limit, we have neglected these recrossings, which seems 
unphysical. Let’s see what happens if we don’t impose the t  → 0 limit. For our one-



dimensional potential consider what happens when the dividing point is to the left of the 
point smax where V(s) is maximum, s≠ < smax . The trajectories that go from left to right at 
t=0 but do not have enough energy to surmount the rest of the barrier will bounce back. 
They are not reactive. Thus we modify our expression: 
 
 

 

 
where pmin is the minimum momentum a trajectory must have initially so that it can 
overcome the barrier. This can be found from the equation: 
 

 
 
Performing the integral then gives us: 
 
 

,  

 
a result independent of s≠ .  
 
 
The correct correlation function recipe to calculate kf is as follows:  
 

   
k f = pA

−1 < s(0)δ (s(0) − s≠ )θ(s(t) − s≠ ) >|tm <t<tr
      (*) 

 
 
The correlation function is to be evaluated for times that are longer than the molecular 
time scale tm, which is roughly the time scale for the trajectories to recross, but shorter 
than the time scale tr associated with the reaction itself (i.e. ~ kf

-1). In this latter sense this 
is still a “zero-time limit”: the molecular time scale is not resolved by our 
phenomenological rate equations that depend only on kf and kb.    
 
From the above arguments, transition state theory always overestimates the rate constant 
because it assumes that every trajectory launched towards the products is reactive. One 
thus can come up with a variational transition-state theory, in which one would estimate 
an upper bound on kf  
 

 



with respect to the location of the dividing plane s≠ . One can see that in our particular 
simple one-dimensional case this will give the exact answer, with the optimum plane 
located at smax.  
 
Note that equation (*) is more general than the model adopted above: It does not in fact 
assume Newtonian dynamics along the coordinate s. Instead, our system can contain any 
number of degrees of freedom, while s can represent a one-dimensional order parameter 
(or experimental signal) used to monitor the reaction progress. For a commonly used 
model, where the dynamics along s is stochastic and is described by a Langevin equation 
(which, in addition to the conservative force  -dV/ds, involves a velocity dependent force 
and a random force both resulting from the interactions of the system of interest with its 
environment), the rate can also be computed using Eq. (*).      
 
 


