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The single experience of one coin
being spun once has been repeated
a hundred and fifty six times. On
the whole, doubtful. Or, a
spectacular vindication of the
principle that each individual coin
spun individually is as likely to
come down heads as tails and
therefore should cause no surprise
each individual time it does

Tom Stoppard, “Rosencrantz and
Guildenstern are Dead”

Chemistry is a discipline that studies how molecules convert into one another. A
chemical reaction can involve several different molecules. For example, a molecule of
sodium chloride can fall apart (i.e., dissociate) into the sodium and chlorine atoms.
The simplest possible chemical reaction involves conversion of some molecule A into
a different form B. To describe this reaction, we write the following equation:

A = B (1)

Generally, whatever is on the left hand side of the equation is called the ”reactant(s)”
and whatever is on the right is the ”product(s)”. So, in our example, A is the reactant
and B is the product. Since no other molecules are involved in this process, A and
B must consist of the same atoms. That is, they must be described by the same
chemical formula. The only difference between A and B can then be in the manner
in which those atoms are arranged in the molecule. Figure 1 shows two examples: In
the first one, we have the molecule of 1,2-dichloroethylene, which is described by the
chemical formula C2H2Cl2. This molecule can exist in two possible conformations
(called isomers), which are our molecules A and B. The conversion between A and B
in this case is what chemists refer to as isomerization. The second example involves a
much more complicated process, in which a disordered molecular chain A undergoes
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A B

kA→B

kB→Α

Figure 1. Examples of a reversible reaction A=B: isomerization of
a small molecule and protein folding/unfolding. The second process
involves self-structuring of a long molecular chain, typically consisting
of hunders or thousands of atoms, which ends with a folded protein
molecule. The atomistic details are not shown in the second case.

a rearrangement where it forms a well defined structure, the protein molecule B. This
process is commonly referred to as protein folding, where A represents the unfolded
protein state and B is the folded one. Biological molecules, such as proteins and
RNA, have to fold in order to function, and so the processes of this type are of great
interest to biophysicists and biochemists.

At this point you may ask: Why only two states, A and B, are used to describe this
process? Clearly, there is a continuum of different shapes that a molecule can assume.
For example, it seems likely that to go from one planar configuration in Fig. 1 to the
other, the molecule C2H2Cl2 must be twisted 180 degrees around the C = C bond,
thus requiring it to assume a series of non-planar shapes along the way. Perhaps then
a reaction of the form A = I1 = I2 = · · · = B, where In represents all those non-
planar intermediates (the number of which is, strictly speaking, infinite), would make
more sense. Likewise, in our second example the unfolded protein state A does not
even represent any unique molecular arrangement. Rather, A describes a collection
of random-looking molecular shapes each resembling a long piece of spaghetti. Why
do we lump all those into a single state? These are very interesting questions. The
fundamental reasons why a collection of states can, in certain cases, be represented
as a single state will be explained later on. For now let us adopt a more pragmatic
view that based on how different molecular configurations are observed in practice.
A chemist tells the difference between A and B by observing some physical property
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of the molecule. For example, A and B may absorb light at different wavelenghs,
i.e., they have different colors. If only two colors can be experimentally observed, we
call the chemical containing the molecules of one color A and the other color B. If
more colors are seen, then we need more states, or molecular species, to describe the
process. It turns out that in many cases only two colors, rather than a continuum of
colors, are observed. Whenever this is the case we use our reaction scheme (1).

There is another empirical observation that will have to be adopted here (and will
be justified later). It is quite common for the reactions described by Eq.(1) that if
one mixes NA molecules of A and NB molecules of B, then these numbers will evolve
in time according to the following differential equations

dNA

dt
= −kA→BNA + kB→ANB (2)

dNB

dt
= −kB→ANB + kA→BNA

Chemists call the time evolution described by these equations “first order kinet-
ics”.These equations are not exact. Indeed, they cannot be exact since they describe
continuously changing functions while the number of molecules is an integer number.
Nevertheless, as long as the total number of molecules in the system is very large,
they are a reasonable approximation. The quantities kA→B and kB→A are called the
rate constants or rate coefficients for going from A to B or B to A. They are not
really constants in that they typically depend on the temperature and, possibly, on
other properties of the system. Nevertheless, as silly as the phrase “temperature
dependence of the rate constant” sounds, this is something you will have to get used
to if you hang around chemists long enough.

Let us now examine what the solution of Eq.(2) looks like. Suppose that we start
with molecules of A only and no molecules of B. For example, we could heat up our
solution of proteins, which typically results in all of them being unfolded; then we
could quickly reduce the temperature of the solution and watch some of them fold.
That is, our initial condition is NA(0) = N , NB(0) = 0. The solution is then given
by:

NB(t) = N
kA→B

kA→B + kB→A

(1− e−(kA→B+kB→A)t) (3)

NA(t) = N −NB(t)

and is schematically shown in Figure 2.
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Figure 2. Starting with the pure reactant A, the amount of the re-
actant decreases and the amount of the product B increases until they
reach their equilibrium values.

We see that, at first, the number of molecules of A decreases and the number of
molecules B increases. Eventually, as t→∞, these amounts attain constant values,
NA(∞) and NB(∞). This situation is referred to as chemical equilibrium. The
equilibrium amounts of A and B satisfy the relationship

kA→BNA(∞) = kB→ANB(∞), (4)

which, according to Eq. 2, ensures that the equilibrium amounts stay constant,
dNA/dt = dNB/dt = 0.

Imagine now that we can see what individual molecules are doing. According to
our initial condition, at t = 0 they are all in state A. Eq. 3 then predicts that
the population of molecules in A will start decreasing as a function of time, follow-
ing a nice smooth curve such as the one shown in Fig. 2. How can we interpret
this behavior in terms of the underlying behavior of each individual molecule? Per-
haps the molecules, initially all in state A, are “unhappy” to be so far away from
the equilibrium situation and so they are all inclined to jump into B, in an orga-
nized fashion, until sufficient number of molecules B are created. This, however,
seems highly unlikely. Indeed, for this to happen the behavior of a molecule should
be somehow influenced by the number of other molecules in the states A and B.
Molecules interact via distant-dependent forces. It is, of course, not inconceivable
that interaction between two neighboring molecules could make them undergo a tran-
sition to another state in a concerted fashion. However this can only happen when
the molecules are close enough. If the experiment is performed in a large beaker,
the behavior of two sufficiently distant molecules should be uncorrelated. Moreover,
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any cooperativity among molecules would disappear as the number of molecules per
unit volume becomes smaller and smaller and, consequently, the average distance
between the molecules increases. Since Eq. 2 is known to be satisfied even for very
dilute solutions of molecules, the hypothesis that the molecules somehow conspire to
follow these equations must be wrong.

On the contrary, Eq. 2 is consistent with the view that the molecules are entirely
independent of one another and each is behaving in a random fashion! Indeed,
consider Figure 3, where we have N = 6 molecules (the trajectories of only 3 of
them are shown). Each molecule jumps randomly between the states A and B. I
have generated a trajectory for each on the computer using a simple random number
generator (a computer program that spits out random numbers). Of course I had to
know some additional information: For example, it is necessary to know something
about the average frequency of the jumps. The precise mathematical description of
the random jump process will be given below.

The trajectory of each molecule was generated independently. The molecules, how-
ever, were ”synchronized” at the beginning of the calculation. That is, they are all
in state A at t = 0. If we wait for some time, some of them will make a transition
to B so that NA will decrease (and NB will increase). Indeed, such a decrease is
observed in Fig. 3. Although the shape of the curve NA(t) is somewhat noisy, it is
close to the curve obtained from Eq.3. If I repeat this calculation (i.e., generate new
random-jump trajectories for each molecule) I will get another NA(t) curve. Most of
the time, it will be close to Eq.3 although, occasionally, significant deviations may be
observed. The noise will however go away if we repeat the same experiment with a
much larger number of molecules. Even though each individual molecule is random,
a large collection (or, as physicists call it, an ensemble) of such molecules behave in
a predictable way. Such a predictable behavior is not unusual when large numbers
of randomly behaving objects are involved. Your insurance company, for example,
cannot predict each individual car accident occurring to their clients yet they can es-
timate the total number of accidents. They would not know how much to charge you
for your policy otherwise. Likewise, although each molecule of air is equally likely to
be anywhere in your house, you probably do not need to worry about suffocating in
your sleep as a result of all the molecules gathering in the kitchen.

Our picture of randomly behaving, independent molecules also explains the origin
of chemical equilibrium in the system. At t = 0 all the molecules are in state A.
Since there are no molecules in state B, the only transitions we will see early on
are those from A to B. As the time goes by, there will be more molecules in B and,
consequently, transitions from B to A will begin to occur. Once the number of A
→B transitions is, on the average, balanced by that of B →A transitions, the total
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Figure 3. Six molecules were initially prepared in the reactant state
(A). Each molecule proceeds to jump, in a random fashion, between A
and B. Only the trajectories of three of them are shown. This results in
a decaying population of state A, NA, which agrees with the prediction
of Eq.3 shown as a smooth line

number of molecules in A or B will stay nearly constant. Equilibrium, therefore,
results from a dynamic balance between molecules undergoing transitions in both
directions.

Let us emphasize that equilibrium here is a property of the ensemble of the molecules,
not of each individual molecule. That is, each molecule does not know whether or not
it is in equilibrium. In other words, if we were to examine the sequence of random
jumps exhibited by any specific member of the ensemble, it would not appear in
any way special at t = 0 or at any value of time t. The nonequilibrium situation
at t = 0 results from synchronization of all the molecules, i.e., forcing them all
to be in state A. This creates a highly atypical (i.e., nonequilibrium) state of the
entire ensemble for, while there is nothing atypical about one particular molecule
being in state A, it is highly unlikely that they all are in A, unless forced to by the
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experimentalist. Starting from this initial state, each molecule proceeds to evolve
randomly and independently of other molecules. At sufficiently short times t, there
still a good chance that many molecules have remained in the initial state A so they
are correlated, not because they interact with one another but because they have
not all forgotten their initial state. Once all of them have had enough time to make
a few jumps, they are all out of sync (see Fig. 3), any memory of the initial state is
lost, and the ensemble is in equilibrium.

So far I have been vague about the specifics of the random-jump process exhibited
by each molecule. To develop a mathematical description of this process, divide Eq.2
by the total number of molecules N = NA +NB. As our molecules are independent,
it then makes sense to interpret pA,B = NA,B/N as the probabilities to be in states
A or B. This gives

dpA
dt

= −kA→BpA + kB→ApB (5)

dpB
dt

= −kB→ApB + kA→BpA

According to these equations, if the time is advanced by a small amount δt then the
probability of being in A will become:

pA(t+ δt) = (1− kA→Bδt)pA(t) + (kB→Aδt)pB(t) (6)

We can interpret this as follows:

pA(t+ δt) = (conditional probability to stay in A having started from A)× (probability to start in A) +

+(conditional probability to make transition from B to A)× (probability to start in B)

Therefore if the molecule is found in state A, the probability for it to make a jump
to B during a short time interval δt is equal to kA→Bδt. The probability that it will
stay in A is δt is 1− kA→Bδt. The rate constant kA→B is therefore the probability of
the reaction A→ B happening per unit time.

By advancing the time in small steps δt and deciding whether or not to jump to the
other state as described above, a single-molecule trajectory can be created, which
corresponds to specified values of the rate constants kA→B and kB→A. This way, you
can generate your own version of Figure 3. Suppose, for example, that at t = 0 the
molecule is in A. Advance time by δt. Now chose the new state to be B with the
probability kA→Bδt and A with the probability 1 − kA→Bδt. And so on. Whenever
the molecule is in state B, upon advancement of time by δt the new state becomes A
with the probability kB→Aδt and remains B with the probability 1 − kB→Aδt. This
procedure creates a discrete version of the trajectory shown in Fig.4, with the state
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of a molecule specified at t = 0, δt, 2δt, . . . . It will become continuous in the limit
δt→ 0.

A traditional chemical kineticist deals with curves describing the amounts of various
molecules such as the ones shown in Fig. 2. Given the experimentally measured
time evolution of NA(t) and NB(t), he or she can attempt to fit these dependences
with Equations 2 or 3. If such a fit is successful, it will provide an estimate for the
rate constants kA→B and kB→A. In contrast, a single-molecule chemist is faced with
a dependence like the one shown in Fig. 4. Because this dependence is a random
process, it is not immediately obvious how our single-molecule kineticist could extract
the rate constants from the experimental data. It turns out that Fig. 4 contains the
same information as Fig. 2. To see this, consider the time tA (or tB) the molecule
dwells in A(or B) before it jumps to the other state (Fig. 4). Let

pA→B(tA)dtA

be the probability that the molecule will make a transition from A to B between tA
and tA + dtA, where the clock measuring tA was started the moment the molecule
has made a transition from B to A. Recall that the rate constant kA→B has been
interpreted as the probability of making the transition to B per unit time. It is then
tempting to write

pA→B(tA)dtA = kA→BdtA

Unfortunately this is wrong. Indeed, integrating the above equation would lead to a
cumulative transition probability to make the transition (at any time)

∫ ∞
0

pA→B(tA)dtA =∞
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that is infinite. This is nonsense since probabilities cannot be infinite. Instead, a more
reasonable expectation would be for the above integral to be equal to 1, which means
that the transition happens with certainty provided one waits long enough.

What is wrong with our logic? Recall that kA→BdtA is a conditional probability of
making a transition from A to B provided that the molecule is found in state A at
tA. But it is possible that the molecule has already made the transition before tA.
The correct equation to write is then:

pA→B(tA)dtA = kA→BdtASA(tA), (7)

where SA(tA) is the survival probability, i.e., the probability that the molecule has
not escaped from A during the time interval between 0 and tA. Because the only
way to escape from A is to make a transition to B, it is clear that the transition
probability pA→B(tA)dtA is equal to the amount by which the survival probability
decreases during dtA, −[SA(tA + dtA)− SA(tA)] = −dSA. This leads to a differential
equation for the survival probability,

−dSA = kA→BSAdtA. (8)

Solving this with the initial condition S(0) = 1 gives the survival probability

SA(tA) = exp(−kA→BtA) (9)

and the transition probability

pA(tA) = kA→B exp(−kA→BtA) (10)

As expected, this transition probability satisfies the condition
∫∞
0
pA(tA)dtA = 1,

which implies that, if one waits long enough, the molecule will undergo a transition
to B, with certainty. “Long enough” means much longer than the average dwell time
in A, which is given by

< tA >=

∫
tApA(tA)dtA = 1/kA→B (11)

The latter relationship shows that the rate constants are directly related to the mean
dwell times spent to each state and so they can be inferred from a long trajectory such
as the one shown in Figure 4. These dwell times further satisfy the relationship
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< tB > / < tA >= kA→B/kB→A (12)

Compare this with Eq. 4, which predicts:

< NB(∞) > / < NA(∞) >= kA→B/kB→A (13)

The similarity between the two ratios is not surprising. Indeed, it sounds intuitively
appealing that the equilibrium number of molecules found in state A should be
proportional to the time each given molecule spends in this state. More generally,
this is the ergodicity principle at work. This principle declares any time average
performed over a long trajectory of a molecule should be identical to an average over
an equilibrium ensemble of such molecules. Consider the equilibrium probability of
being in state A, pA(∞). It can be calculated as the ensemble average, i.e., the
fraction of molecules found in A:

pA(∞) =
NA(∞)

NA(∞) +NB(∞)

It can also be calculated as the time average, i.e., the fraction of the time the molecule
spends in A:

pA(∞) =
< tA >

< tB > + < tB >

In view of Eqs. 12 and 13, the two methods give the same result.

pA(∞) =
kB→A

kA→B + kB→A

Although these findings are plausible, we note that there are many systems that do
not behave in an ergodic way. We will see a few examples later.

Our example shows that a single-molecule measurement can provide the same in-
formation (i.e., the rate constants) as the traditional, bulk chemical kinetics. But
if both provide the same information, why do single-molecule measurements? As
discussed in the Introduction, single molecule experiments require rather involved
microscopy and single-photon detection and so they can be difficult and expensive.
Moreover, real single-molecule data rarely look like our idealized Figure 4. Rather,
real single molecule trajectories are often plagued by noise and are also too short
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to allow reliable statistical analysis required to accurately estimate the underlying
kinetic parameters such as the rate coefficients.

The above are just a few reasons for the skepticism encountered by the single-molecule
experimenters in the early stages of the field. There are however many advantages to
measuring chemical kinetics the single-molecule way. Those advantages will become
more clear later on in this book. The simple two-state example considered here,
however, already reveals one important advantage. Suppose A converts to be much
faster than B to A, i.e., kA→B � kB→A. Then, according to Eq.4, we have NA �
NB in equilibrium. What is we are specifically interested in the properties of the
molecule A? As the equilibrium mixture of A and B mostly consists of B, whatever
experimental measurement we choose to make will report mostly on the properties
of B rather than A. If we want to specifically study A, first of all we will need to
find a way to drive all of our molecules to the state A. Even if we have succeeded in
doing so, we only have a very short time interval, ∆t� 1/kA→B, before most of the
molecules will jump back to B. A single-molecule approach resolves this problem: As
we observe a molecule’s trajectory, we know what state it is in. If we are specifically
interested in A, then we simply interrogate the molecule while it is in A.

A related advantage of single-molecule experiments is that they do not require syn-
chronization of a large number of molecules to study their time dependent properties.
Indeed, in order to measure kA→B and kB→A using a bulk technique, it is necessary
that one starts away from equilibrium . For example, to observe the curve of Eq.3
it is necessary to synchronize all the molecules by drive all of them to state A at
t = 0. As mentioned earlier, this sometimes can be achieved by quickly changing the
conditions of the experiment. For example, one can quickly change the temperature
of the system. In doing so, it is necessary to ensure that the preparation process
itself is much faster than the process one is trying to observe (e.g., the conversion
of A to B and back to A). If, for instance, the rates kA→B and kB→A are of order
of 103s−1, then one will have to devise a way of heating the system up or cooling it
down in less than a millisecond. This is not easy, especially if A and B are mixed in
a beaker of a macroscopic size! Single-molecule experiments sidestep this difficulty
altogether by observing the trajectories of molecules under equilibrium conditions,
one molecule at a time.


